Solvent Effects in the Reactions of Alkynols with Lithium Aluminium Hydride

By JOHN W BLUNT, MICHAEL P HARTSHORN,* MURRAY H G MUNRO, LEE TIN SOONG, REWI S THOMPSON, and JOHN VAUGHAN

(Department of Chemzstry, Unzverszty of Canterbury, Chrzstchurch, New Zealand)

Summary From a comparison of the reactions of alkynols **(la)** and **(1 b)** with lithium aluminium deuteride, a specific solvent role in alkynol reductions is identified and is in keeping with the observed marked solvent-dependence of product ratios

IN the lithium aluminium hydride (LAH) reduction of **l,I-diphenylbut-2-yn-l-ol** to give the allene, **1,** I-diphenylbuta-1,2-diene, and the (Z) - and (E) -1,1-diphenylbut-2-en-1-ols, the yields of products and the site of initial hydride (or deuteride) attack on the acetylenic system were markedly solvent-dependent¹ We now report the results of a comparative study of the LAH reductions of 2,2-dimethyl-3-phenylhex-4-yn-3-01 **(la)** and its l-methoxy-derivative **(lb),** which illuminate further the nature of the solvent dependence

The data in the Table pertain to reactions of the alkynols **(1)** with lithium aluminium deuteride in **a** range of ether

solvents, the reactions being quenched by the addition **of** water For the alkynol **(la)** the relative yields of products **(2a)** and **(3a)** vary appreciably with the solvent used and, in the case of tetrahydrofuran (THF), with the reaction

TABLE Product yields of reactions of alkynols(1) with lithium aluminium deuteride

		Yield $\binom{9}{0}$			
Alkynol	Solvent. temp $(^{\circ}C)$, time (h)			Attack by D^- at near; far carbon	
		Allene (2)	(E) -Alkenol (3)	Leading to (3)	Overall
(1a)	$Et2O$, 35, 89	84	Trace		$ca \t0:84$
	THF, 35, 89	30	60	600 ^o	60:30 ^b
	THF, 65, 25	66	18	18:0	18:66
	2.5 -Me ₂ -THF, 65.2.5	92	$\boldsymbol{2}$	2:0	2:92
(1b)	$Et2O2$, 35, 16	69	27	24:3	24.72
	THF, 35, 16	29	70	30:40	30.69
	THF, 65, 25	57	42	25:17	25:74
	2,5-Me,-THF, 35, 16	54	44	26:18	26:72
	2.5 -Me.-THF, 65.25	67	30	23:7	23:74
	2.5-Me, THF. 91,05	75	25	25:0	25:75

8 These ratios were determined from a comparison of the peak intensities of the protonated alkene-carbons in the repetitive-pulse, Fourier-transform ¹³C n m r spectra of monodeuteriated products (3), all obtained under near-identical conditions to minimise effects
to possible differences in carbon relaxation times b These values are estimated to be temperature. Further, the relative yields of products formed by deuteride attack at the near : far acetylenic carbon atoms (see the Scheme) also vary.

In contrast, for the reactions of alkynol **(lb),** while the relative yields of allene **(2b)** and alkenol **(3b)** are solventand temperature-dependent, the relative yields of products derived from near- and far-carbon deuteride attack are *independent* of both solvent and reaction temperature.

These results are interpreted in terms of internal solvation **of** aluminium by the methoxy-substituent in the reacting alkoxyaluminium deuteride **(4);** in the absence of an internal ether, an external and potentially variable ether solvent molecule solvates the aluminium. Given the consistent involvement of the methoxy-function as in **(4),** a constant near : far carbon attack is reasonable and, within the limit imposed by a near: far attack ratio of **1** : **3,** the yield of allene **(2b)** is but a reflection of the extent to which the intermediate carbanion *(5)* (Scheme) is converted into allene **(2b)** prior to reaction quenching.

(Received, 10th June **1980;** *Corn.* **635.)**

'M. P. Hartshorn, **R.** S. Thompson, and J. Vaughan, *Aust. J. Ghem.,* **1977, 30,** *865.*